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SUMMARY

Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improv-

ing the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the

function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets

from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analy-

sis based on high-dimensional regularized regression yielded lipid–transcript associations indirectly vali-

dated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript

associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 3 By804 recombinant

inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sul-

folipids and glycerolipids. The resulting association network further supported the involvement of 50 gene

candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed

approach provides high-confidence candidates for experimental testing in maize and model plant species.
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INTRODUCTION

One of the many determinants of kernel quality in maize

(Zea mays L.) is its oil content and composition (Watson,

1987). Maize oil is highly calorific, rich in polyunsaturated

fatty acids (e.g. linoleic acid) and is largely composed of

triacylglycerols (TAGs), high-energy lipids that nourish ger-

minating seedlings (Baud and Lepiniec, 2010). Since maize

oil is widely used as a food, feed and biofuel resource,

obtaining a full characterization of the genetic underpin-

nings of lipid metabolism in maize is fundamental for

improving oil quality, quantity and composition.

In recent years progress has been made towards the elu-

cidation of the acyl-lipid metabolism in Arabidopsis

thaliana (Graham and Eastmond, 2002; Beisson et al.,

2003; Li-Beisson et al., 2013), accompanied by technologi-

cal advances that facilitate the identification and quantifica-

tion of hundreds of lipid species from a single sample

(Wenk, 2005, 2010; Hummel et al., 2011). De novo biosyn-

thesis of fatty acids (FAs) takes place in the plastid with

successive incorporations of acetyl-coenzyme A (CoA). The

FAs can then be subjected to elongation, desaturation and

eventual export from the plastid, and can ultimately give

rise to the distinct acyl-lipid species, including phos-

phatidylinositols (PIs), phosphatidylcholines (PCs), phos-

phatidylethanolamines (PEs), phosphatidylglycerols (PGs),

monogalactosyldiacylglycerols (MGDGs), digalactosyldia-

cylglycerols (DGDGs), sulfoquinovosyldiacylglycerols

(SQDGs), diacylglycerols (DAGs) and TAGs (Li-Beisson

et al., 2013). However, the large number of intermediates

and the interaction between lipid pathways render the

characterization of lipid metabolism quite challenging.

The advent of powerful statistical methods for genome-

wide association studies (GWASs) and linkage-based map-

ping of quantitative trait loci (QTLs), combined with the

available diversity of maize germplasm, allow the genetic

architecture of complex traits in maize to be uncovered.

With the prospect of enhancing kernel quality, many such
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efforts have provided insights into the genetic blueprint

underlying lipid metabolism in maize (Laurie et al., 2004;

Yang et al., 2010; Cook et al., 2012). However, kernel oil

accumulation is a polygenic trait, as substantiated by link-

age mapping and the repeated selection of Illinois high-oil

(IHO) lines over 100 generations to achieve a 20% increase

in oil concentration (Laurie et al., 2004; Moose et al., 2004).

This renders the characterization of the genetic determi-

nants of lipid metabolism a daunting task.

One way to identify genes involved in lipid metabolism

is through co-expression analysis, since this method has

been found to be effective in deciphering gene functions

based on the ‘guilt-by-association’ paradigm (Aoki et al.,

2007; Saito et al., 2008). Co-expression studies have

already investigated oil biosynthesis in Arabidopsis (Ment-

zen et al., 2008), Physaria fendleri (Troncoso-Ponce et al.,

2011), oil palm (Guerin et al., 2016), the green alga

Chlamydomonas reinhardtii (Gargouri et al., 2015) and in a

comparative analysis using four oilseed species (Horn

et al., 2016). However, such studies depend on existing

knowledge of the function of genes, and it remains partial

even for the most extensively studied model plant A. thali-

ana (Rhee and Mutwil, 2014). Therefore, the consideration

of additional data profiles, such as those of metabolites

(and lipids), may help decipher the role of candidate genes

(Urbanczyk-Wochniak et al., 2003; Rischer et al., 2006;

Bylesj€o et al., 2007; Mintz-Oron et al., 2008; Szymanski

et al., 2014; Cavill et al., 2016).

If conserved, knowledge about lipid pathways can be

transferred between plant species. The oil content in the

seeds of A. thaliana mutants lacking WRINKLED1 (WRI1), a

key master regulator of FA biosynthesis in higher plants,

was restored with the respective orthologs from rapeseed

(Liu et al., 2010), Camelina sativa L. (An et al., 2017), maize

(Pouvreau et al., 2011), oil palm (Ma et al., 2013) and coco-

nut (Sun et al., 2017). In maize, WRI1a and WRI1b encode

transcription factors of the APETALA2/ethylene-responsive

element-binding (AP2/EREB) family that increase FA con-

tent in seeds and are co-expressed with glycolytic enzymes

and genes involved in FA and TAG biosynthesis in the ker-

nel (Pouvreau et al., 2011). In oil palm, too, a WRI1 gene

was co-expressed with glycolytic enzymes and genes

involved in FA and TAG biosynthesis in the fruit mesocarp

(Guerin et al., 2016). With respect to the downstream steps

in oil biosynthesis, the over-expression of a type-one acyl-

CoA:diacylglycerol acyltransferase (DGAT1) from Ara-

bidopsis greatly increased the TAG content in the leaves of

tobacco plants (Bouvier-Nav�e et al., 2000; Andrianov et al.,

2010). Similarly, a type-two DGAT from C. reinhardtii was

shown to increase TAG concentrations in Arabidopsis

(Sanjaya et al., 2013). This is all the more spectacular given

the divergence of Arabidopsis from the far-related mono-

cots oil palm and coconut (120 million years ago) and from

C. reinhardtii (1 billion years ago), and the conservation of

oil biosynthetic pathways in seed and non-seed tissues.

Altogether, this suggests the existence of highly conserved

lipid biosynthetic pathways in higher plants.

However, determination of all the genes underlying lipid

metabolism is complicated by targeted expression of mul-

tiple genes in specific tissues and organs (Ohlrogge et al.,

1991). Lipid composition further depends on the functional

activities of the downstream protein products and their

interrelation in the larger genome-wide metabolic network

(Haslam et al., 2016). Nevertheless, identification of a can-

didate gene underlying lipid metabolism based on data

integrative studies in a single organ provides a stepping

stone in revealing the role of the gene in other tissue

types. In addition, given the tight connection between leaf

physiology and kernel yield in maize (Ca~nas et al., 2017), it

is expected that an understanding of lipid metabolism in

leaves and how it contributes to carbon partitioning will

contribute to revealing their role in other tissues (e.g.

kernel).

The combination of quantitative genetics and co-expres-

sion studies provides a powerful framework for functional

characterization of genes (Mackay et al., 2009). For

instance, this strategy has been used to identify genes con-

trolling glucosinolates and anti-herbivore defense in Ara-

bidopsis (Chan et al., 2011), micronutrients in chickpea

(Upadhyaya et al., 2016), leaf morphology in oilseed rape

(Jian et al., 2017) and phosphorus stress tolerance in soy-

bean (Zhang et al., 2017). In this class of approaches, one

may utilize a single data set to determine loci associated

with a trait of interest and then narrow down the search to

those whose respective gene transcripts are correlated

with the trait (Chen et al., 2016); moreover, streamlining

the list can be carried out by investigation of gene

co-expression based on publically available data sets

(Serin et al., 2016). However, these approaches focus on

analysis of a single trait at a time and neglect the inherent

dependence between multiple traits in attempting to iden-

tify the associated loci.

With respect to lipid metabolism in maize, a recent effort

based on the integration of the findings from (i) a GWAS

of fatty acids using 368 maize inbred lines, (ii) QTL map-

ping of oil concentration and composition in the maize ker-

nel of maize, using a B73 9 By804 recombinant inbred ine

(RIL) population, and (iii) a co-expression network based

on the expression landscape of seeds obtained 15 days

after pollination from the population indicated in (i), identi-

fied 43 high-confidence candidates involved in oil biosyn-

thesis in maize (Li et al., 2013). A similar methodology was

adopted for testing the association with secondary

metabolites in maize, providing functional prediction for

238 candidate genes, two of which were experimentally

validated (Wen et al., 2014).

Here we report a multi-omics, two-step integrative analy-

sis of data sets comprising the circadian time-resolved
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gene expression and lipid profiles of B73 and the high-oil

line By804. Our unique data set incorporates molecular

read-outs from two distinct field trials, providing greater

confidence in our findings (based on the combination of

two data sets), and relies on well-annotated acyl-lipid com-

pounds. Unlike existing approaches, we do not consider

individual lipid species but harness the presence of corre-

lated traits to identify loci simultaneously associated with

such traits. To this end, we use the graph-guided fused

least absolute shrinkage and selection operator (GFLASSO;

https://github.com/krisrs1128/gflasso) (Kim et al., 2009). We

then refine the findings with results from QTL mapping of

lipid traits from a B73 9 By804 RIL population. This step

narrows down the list of genes putatively involved in the

metabolism of the investigated lipid traits. We show that

such a combination of modeling and QTL studies, which

takes into consideration the correlation structure of multi-

ple traits, is powerful in identifying high-confidence genes

involved in lipid metabolism. This is supported by Gene

Ontology (GO) and promoter motif enrichment analyses to

indirectly test the involvement of our list of candidate

genes in the metabolism of acyl-lipids. Finally, we discuss

the predicted functions of the high-confidence candidates

in the context of lipid metabolism.

RESULTS

Experimental design facilitating the application of two-

step, multi-omics analysis

Our study relied on the integration of data from two time-

series experiments. The time-series experiments consisted

of monitoring gene expression and lipid levels in leaves

of B73 and By804 (a high-oil line) subjected to a 12-h light

followed by a 12-h dark photoperiod (12L12D). These

were determined over 16 and 12 time points in two dis-

tinct trials, designated as ‘winter’ and ‘summer’ trials,

respectively (Figure 1a). The QTL mapping experiment

consisted of determining lipid levels in leaf and seedling

samples in a B73 9 By804 RIL population (Figure 1b).

Having access to two data sets that capture seasonal vari-

ation, we expect to detect prevalent lipid–transcript asso-

ciations, i.e. associations that are not present in a single

season only.

To uncover lipid–transcript associations, we opted to ana-

lyze the data on all lipid species simultaneously, thus cap-

turing the dependence inherent in metabolism. Therefore,

rather than predicting the transcripts which best explain a

single lipid profile, we aimed to identify transcripts which

jointly explain latent variables representing distinct lipid

classes. To this end (i) we employed the GFLASSO model-

ing approach and selected the best predictive genes then

(ii) identified the genes in the QTL from acyl-lipids

measured in the QTL mapping experiment (Figure 1c). We

then (iii) determined the intersection of genes obtained

from (i) and (ii), and finally (iv) investigated the network of

lipid–gene interactions containing the genes obtained from

step (iii) (Figure 1d). Therefore, our approach provides a

novel methodological integration of the data to identify

genes controlling metabolism of acyl-lipids.

Dynamics of lipids and gene expression

A total of 18 028 transcripts and 132 acyl-lipid species were

analyzed in the time-series experiments (Data S1 in the

online Supporting Information). The lipid data set included

representatives from nine classes of acyl-lipids: PIs, PCs,

PEs, PGs, MGDGs, DGDGs, SQDGs, DAGs and TAGs. Prior

to modeling, we investigated the main sources of variation

in the transcriptome and lipidome in the time-series exper-

iments and the degree of similarity of the dynamics in the

two trials (i.e. ‘winter’ and ‘summer’). We first conducted

separate principal component analyses (PCAs) of the lipid

and expression data sets from the two trials. We found that

for the lipidome PC1 separates the two genotypes

(Figure 2a,b), while for the transcriptome PC1 separates

early and late time points, reflecting circadian changes

(Figure 2c,d).

Next, we computed the Pearson correlation coefficient

(r) of the levels from each transcript or acyl-lipid between

the two trials using the 12 overlapping time points (cross-

trial correlation) and between B73 and By804 (cross-geno-

type correlation). Both analyses pointed to median Pearson

correlation coefficients of r = .62 and r = .58 over individ-

ual transcripts across trials and across genotypes, respec-

tively. Lipid levels, on the other hand, were comparatively

more affected by the two factors, resulting in median Pear-

son correlation coefficients of r = .34 and r = .19 across tri-

als and across genotypes, respectively (Figure S1). For the

subsequent analyses, we concatenated the two trials,

resulting in 56 data points, i.e. (16 9 2) + (12 9 2). The rea-

son for concatenation is that co-expression analyses usu-

ally gather all available data, thus increasing the power of

detecting truly functional associations (Usadel et al., 2009).

Unraveling functional lipid-transcript associations

Considering the disproportion among lipid classes (Fig-

ure 3a) and the correlation among lipid species (Fig-

ure 3b), for each of the nine lipid classes we processed the

corresponding lipid species with a PCA and retrieved the

coordinates of the first principal component (latent vari-

able), referred to as lipid score vectors (LSVs), and used

these as responses to be predicted. In summary, each of

the nine LSVs results in finding the linear combination of

acyl lipids from a particular class that maximizes the

spread of the data points. Interestingly, considering that

trials were analyzed jointly, all LSVs except DAG separated

the two genotypes (2-way ANOVA P < .01; Table S1). In

addition, the variance explained with each LSV (R2) ranged

from 0.37 to 0.85 across all nine classes (Figure 3c).
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Overall, distinct acyl-lipid species were weighted evenly in

the deployment of the LSVs used here (Figure S2). We also

note that the corresponding loading weights can be either

positive or negative, implying that LSVs might be nega-

tively correlated to certain acyl-lipid species, thus warrant-

ing the subsequent selection of both positively and

negatively associated transcripts.

To identify lipid–transcript associations, we used the

genome-wide expression data set to determine the tran-

scripts that are predictive of the acyl-lipid levels in the dif-

ferent classes represented by the LSVs, using a regularized

high-dimensional regression framework. The regularized

regression framework is the most suitable candidate, due

to the substantially larger number of predictors in

comparison to the number of samples (Figure 1). To this

end, we used the profiles of all 18 028 transcripts as pre-

dictors in a unified GFLASSO framework, with the nine

LSVs of the acyl-lipid classes as responses. GFLASSO

allowed us to select genes that jointly predict multiple

related traits, i.e. acyl-lipid latent variables, in a single

framework.

After determining the model parameters which optimize

the prediction accuracy of the model (Figure 4a), we inves-

tigated the model performance on a permutation of the

samples. We observed that on permuted samples the error

of the model was significantly larger, thus demonstrating

that the predictability of LSVs from the whole transcrip-

tome is not random (Figure 4b).

×

B73

By804

B73 × By804 RIL

Time series QTL mapping

Leaf

Seedling

Genotype

Experiments

Winter

Summer

× 16 × 12
× 2 × 1

× 6 × 6

× 1 × 1

Readouts & �me 
No. of �me points

Genotype

nsamples = 52
ntranscripts = 18 028

nlipids = 132

Lipids

(a)

(b)

(c)

5’ 10’ 20’ 40’ 60’ 6 h –40’ –20’ 0’ 10’ 30’  6 h

3 h30’ 8 h30’ –30’ –1’

12 h

(d)

RNA-Seq

nsamples = 171
nlipids = 158

nsamples = 157
nlipids = 100

Figure 1. Schematic representation of the experimental design and data analysis.

(a) Schematic representation of the time points in the trials of ‘summer’ (top) and ‘winter’ (bottom), in the course of a 12-h light/12-h dark photoperiod. The time

points shown are relative to either the beginning of the day (orange) or night (dark blue). The time series from the ‘winter’ trial differs from ‘summer’ by four

time points marked in red.

(b) Experimental design of the time-series experiment (‘Time series’ left) and the quantitative trait locus (QTL) mapping experiment (‘QTL mapping’, right). The

first comprised the measurement of gene expression and lipid levels in B73 and By804 plants in the ‘winter’ and ‘summer’ trials following the series given in

(a). The second consisted of the measurement of lipid levels in leaf and seedling samples of a B73 9 By804 RIL population.

(c) GFLASSO modeling (left) and mapping of lipid QTLs (right), using the data acquired from the time series and QTL mapping experiments, respectively.

(d) Lipid–gene association network analysis, using the intersection of the genes selected in (c), therefore integrating genomic, transcriptomic and lipidomic data

(RIL, recombinant inbred lines). The multiplicative factors next to a symbol represent the number of replicates. The displayed icons are freely available at Icons8

(https://icons8.com/).
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To determine the list of predictive genes, we selected

those whose respective regression coefficients were either

below the 2.5th or above the 97.5th percentiles for each

LSV. This rendered nine gene sets of size 902 each, con-

taining approximately 5% of the entire expression data set

(Figure S3, Table S2). Altogether, there were 3537 unique

genes across all gene sets and 62.3% with unknown

function.

Gene Ontology and promoter motif enrichment analysis

The gene sets were separately subjected to GO enrichment

analysis. Given the high redundancy of many hierarchical

terms (e.g. ‘cellular response to starvation’ and ‘response

to starvation’), we considered the top 50 most enriched

categories (Fisher exact test P < .05). Across the gene sets,

the most common functions included lipid metabolism,

auxin biosynthesis and gravitropism, glycolysis, epigenetic

and transcriptional regulation, cytoskeleton maintenance,

ethylene biosynthesis and stress response (Table S3). With

respect to lipid metabolism, we identified the terms ‘galac-

tolypid biosynthetic process’ (SQDGs and DGDGs), ‘unsat-

urated fatty acid biosynthetic process’ (PGs and PCs),

‘isoprenoid biosynthetic process’ (a process that depletes

acyl-coA, precursor of fatty acids: PGs, PCs, MGDGs and

TAGs), ‘oxylipin biosynthetic process’ (fatty acid derivative

and precursor of jasmonate; PIs), ‘lipoate metabolic pro-

cess’ (fatty acid derivative; PEs), ‘glycerol metabolic pro-

cess’ (DGDGs), ‘glycolipid metabolic process’ (DGDGs),

‘liposaccharide metabolic process’ (DGDGs) and ‘polyol

metabolic process’ (a chemical group that includes glyc-

erol; DAGs and TAGs). Therefore, our enrichment analysis

demonstrated that the gene sets obtained by modeling the

LSVs with the help of GFLASSO are involved in lipid meta-

bolism and associated processes.

To complement these findings, we next conducted in sil-

ico promoter motif enrichment analysis for the gene sets

identified in the first step of the analysis. For this purpose,

we first performed untargeted motif identification and then

compared the best hit to existing annotated Arabidopsis

promoter motifs and retrieved the best match. We found

that six out of the nine gene sets were significantly

enriched for motifs associated with the AP2/EREB tran-

scription factor family (SQDGs, DAGs, PEs, PIs, PGs and

PCs). The DGDG and TAG gene sets were enriched for

motifs that matched a LOB/AS2-family transcription factor

and the MGDG gene set for motifs from a mitochondrial
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Figure 2. Principal component analysis of the data collected from the time-series experiment.

(a) Lipid data set from the ‘winter’ trial.

(b) Lipid data set from the ‘summer’ trial.

(c) Transcriptome data set from the ‘winter’ trial.

(d) Transcriptome data from the ‘summer’ trial.

The first two principal components (PCs) separate B73 (blue) from By804 (red) and clusters of time points. Percentages denote the amount of variance explained

by each different PC. The time-point sequences are represented with increasing color transparency. Error bars represent the sample � SE (standard error). No

replicates were assessed for the expression data from the ‘summer’ trial.
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transcription termination factor (mTERF) transcription fac-

tor (Table 1).

Co-localization of transcript–lipid associations with lipid

QTLs

Finally, we identified the GFLASSO-selected candidate

genes that co-localized with the lipid QTLs obtained in

seedling and leaf samples from a B73 9 By804 RIL popula-

tion. In total, 158 and 100 acyl-lipid species were mapped

from seedling and leaf samples in 171 and 157 RILs,

respectively (Figure 1). By setting a logarithm of odds

(LOD) threshold of 4.5 for the QTLs mapped to the different

acyl-lipid classes, we were able to co-localize 12, 63, 81, 56,

63, 15, 4, 32 and 48 candidate genes with the DAG, DGDG,

MGDG, PC, PE, PG, PI, SQDG (Figs S4–S11) and TAG (Fig-

ure 5, Table S4) QTLs, respectively. Altogether, there were

323 unique co-localized genes. To identify GFLASSO-

selected genes co-localizing with QTLs of different lipid

classes, and thus more likely to be functionally associated

with lipid metabolism, we examined the corresponding

gene–lipid association network. The resulting network con-

nects all gene sets, except for that of PI. Notably, genes

associated with MGDG and co-localized with the respective

QTL were also associated with and co-localized with QTLs

from PC, DAG, TAG, PC, PE and SQDG. In total we

obtained 49 genes with a degree of two and a single one, a

putative P-loop containing nucleoside triphosphate hydro-

lase (GRMZM2G313020), with degree of three, i.e. associ-

ated and co-localized with MGDG, PE and SQDG

(Figure 6). In this list, we were also able to identify the vac-

uolar aquaporin TIP2-1 (GRMZM2G027098), a cytosolic

glyceraldehyde-3-phosphate dehydrogenase (GRMZM

2G046804), histone H3C4 (GRMZM2G418258), 50–30 exonu-
clease (GRMZM2G096920), a carbohydrate transporter

(GRMZM2G102683), an erythronate-4-phosphate dehydro-

genase (GRMZM2G070780) and the VP1/ABI3 transcription
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Figure 3. Reduction of acyl-lipid species into lipid score vectors.

(a) Absolute frequency of acyl-lipid classes in the lipid data set. The bar heights correspond to the total number of compounds representing each respective

acyl-lipid class.

(b) Distance-based hierarchical cluster of the acyl-lipid pairwise Pearson correlation coefficients (r).

(c) Lower triangle: pairing scatter plot of the lipid score vectors (LSVs) from all nine lipid classes. Acyl-lipid classes are represented by the scores obtained from

the first component (latent variable) in the corresponding principal component analysis (PCA). Values under parenthesis on the diagonal correspond to the vari-

ance explained (R2) by each LSV in the respective PCA. Upper triangle: LSV pairwise r. Cells marked in black denote r > 0.8, and consequently the associations

given to GFLASSO for the fusion constraint. Blue and red symbols represent the two genotypes, B73 and By804, respectively.

PI, phosphatidylinositol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; DGDG,

digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; DAG, diacylglycerol; TAG, triacylglycerol.
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factor ZmAFL6 (GRMZM2G125596). We also identified the

orthologs of Arabidopsis PVA12 (GRMZM2G006219), per-

oxin PEX14 (GRMZM2G169486), ubiquitin ATGP4

(GRMZM2G086267), auxin-responsive factor ARF1

(GRMZM2G137413) and MED21 (GRMZM2G074280) among

others, including 29 of unknown function (Table S5).

DISCUSSION

Here we used time-resolved leaf transcriptome and lipi-

dome data sets gathered from maize lines grown in two

independent trials to determine lipid–gene associations. To

this end, we used a two-step analysis that combines the

findings from a QTL mapping with results from a novel

multivariate integrative analysis, namely GFLASSO-based

prediction of latent variables. The novelty of the approach

is that the lipid–transcript associations are not built inde-

pendently for each lipid species but rather the dependence

between the species and their latent variable representa-

tives is explicitly considered. Such an approach has the

capacity to direct the search of explanatory variables (here

transcript profiles) and narrow down the list of candidates.

In conducting the analysis, we concatenated the two

data sets. The idea behind this choice was to increase the

power of detecting prevalent functional lipid–transcript
associations, rather than associations specific to either

trial; however, in this approach we cannot exclude that the

detected associations reflect, to an extent, genotype–envi-
ronment interactions. This approach was in line with our

focus to identify a genetic basis for acyl-lipid metabolism

that can be transferred to other tissues (e.g. maize kernel)

as well as tested in species other than maize.

Our PCA revealed that lipid and transcript levels sepa-

rate samples from genotypes and groups of early/late time

points, respectively. Considering that By804 is the result of

continuous selection for lipid traits, it is notable that acyl-

lipid levels, in comparison with transcripts, better separate

the genotypes. The reason for the lack of separation based

on the level of transcripts was likely due to the considera-

tion of the entire transcriptome, which also includes core

functions conserved across diverse maize lines. This was

consistent with the cross-trial and cross-genotype correla-

tion analyses, which indicated that most of the transcrip-

tome was less affected by either factor (i.e. genotype and

time), whereas lipids were particularly variable with
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Figure 4. GFLASSO-based prediction of the lipid score vectors with the

entire transcriptome.

(a) Cross-validation of GFLASSO. Each cell represents the average root

mean square error (RMSE) across 135 (5 trials 9 3 repeats 9 9 lipid score

vectors) estimates. The minimum average RMSE value (0.515) was obtained

using k = 0.5 and c = 0.5.

(b) Permutation scheme. Comparison of the RMSE estimates in the

GFLASSO model cross-validated with k = 0.5 and c = 0.5 (‘Observed’) com-

pared with the same model upon permutation of the data points

(‘Permuted’). The P-value displayed derives from a two-tailed t-test.

Table 1 Gene set promoter motif enrichment analysis results

Lipid class Enriched motifsa MEME Eb Tomtom Ec

SQDG AP2/EREB (ESE1) 6.20 9 10�64 1.81 9 10�1

DGDG LOB/AS2 (ASL18) 1.30 9 10�56 2.28 9 10�2

DAG AP2/EREB (CRF4) 1.30 9 10�53 1.58 9 10�1

PE AP2/EREB (ERF73) 2.00 9 10�37 2.16 9 10�3

PI AP2/EREB (AT4G18450) 1.80 9 10�22 1.05 9 10�2

TAG LOB/AS2 (ASL18) 1.40 9 10�56 1.08 9 10�1

PG AP2/EREB (ERF105) 1.30 9 10�55 1.17 9 10�3

PC AP2/EREB (ERF73) 2.20 9 10�80 1.33 9 10�1

MGDG mTERF (AT5G23930) 3.90 9 10�59 3.68 9 10�3

aEnriched motifs: transcription factor families that putatively bind
the motifs most enriched in each gene set. The Arabidopsis best
hits are shown in parenthesis.
bMEME E: number of enriched motifs that, given the same width
and site count, one would expect to find in a similarly sized set of
randomly shuffled sequences.
cTomtom E: number of times that the queried motif would be
expected to match a known motif as well or better than the
observed match in a randomized target database of the same size
(E = P 9 nmotifs).
PI, phosphatidylinositol; PC, phosphatidylcholine; PE, phos-
phatidylethanolamine; PG, phosphatidylglycerol; MGDG, mono-
galactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG,
sulfoquinovosyldiacylglycerol; DAG, diacylglycerol; TAG, triacyl-
glycerol.
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respect to genotype. In addition, most LSVs separated B73

and By804 irrespective of the time course and trial, again

underlining the large difference in lipid metabolism

between the two genotypes.

The applied GFLASSO framework inherits the sparsity of

LASSO (Tibshirani, 1996) and provides similar models for

strongly correlated traits. Therefore, the derived optimal

models simultaneously leveraged gene selection and
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Figure 5. Co-localization of quantitative trait loci (QTLs) and GFLASSO candidates for triacylglycerols (TAGs).

All 10 maize chromosomes (Chr. 1–10), including the plastid (Pt) and mitochondrial (Mt) genomes, are depicted to scale (Mb, million base pairs). Genes whose

transcripts were associated with lipid classes via GFLASSO (lipid–transcript associations) co-localizing to the QTL of TAG in seedlings (red) and mature leaves

(blue) are shown as black lines. DGAT1-2 is one of 48 co-localized candidates. A detailed gene list is available in Table S4.
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Figure 6. Lipid–gene association network.

Transcripts associated with lipid classes via GFLASSO (lipid–transcript associations) whose genes also co-localized to the QTL of those lipid classes (lipid–gene
associations) are shown as white or red circles depending on having a single association or more, respectively. The nine distinct lipid classes are shown as yel-

low diamonds. PI, phosphatidylinositol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; MGDG, monogalactosyldiacylglyc-

erol; DGDG, digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; DAG, diacylglycerol; TAG, triacylglycerol.
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lessening of differences in the corresponding coefficient

estimates for any given pair of correlated LSVs. Compar-

ison of the models with those derived by permutation of

transcriptomics data showed that the time-resolved gene

expression levels were predictive of the lipid time profiles.

Here, the use of PCA-derived components had the advan-

tage of: (i) a reduced model bias, concerning the cross-vali-

dation error minimization, (ii) projections (i.e. LSVs) where

the data points spread the most, thus refining generaliz-

ability, and finally (iii) feasible computations. However, we

refrained from interpreting relationships among LSVs, as

no biological association can be expected.

The enrichment analyses indicated the involvement of

model-selected genes in lipid metabolism and related pro-

cesses. Overall, lipid metabolism, auxin biosynthesis and

gravitropism (governed by the polar auxin transport;

Rashotte et al., 2000), glycolysis, epigenetic and transcrip-

tional regulation and cytoskeleton maintenance were GO

terms enriched in at least one of the selected gene sets. A

very recent study identified all these processes to be regu-

lated by genes co-expressing with selected lipid biosynthe-

sis genes in the oil palm mesocarp (Guerin et al., 2016).

Auxin biosynthetic and responsive genes were shown to

be upregulated along with an increase in the accumulation

of TAGs in the leaves of LEAFY COTYLEDON 2 (LEC2)-over-

expressing Arabidopsis plants (Stone et al., 2008). In addi-

tion, genes involved in fatty acid biosynthesis including

WRI1 were found to be co-expressed with auxin trans-

porter genes in Brassica napus (Deng et al., 2015). Gly-

colytic pathways make pyruvate available for FA

biosynthesis (Rawsthorne, 2002), explaining why genes

involved in FA biosynthesis together with those that hydro-

lyze cell wall components are predictive of the LSVs. In

addition, cytoskeletal organization and sterols determine

polar auxin transport and signaling (Yang et al., 2013; Li

et al., 2014), suggestive of how these processes might be

intertwined. Stress-related terms could indicate a role for

membrane lipids upon stimulation by biotic and abiotic

factors and rearrangement of cutin and cuticular waxes in

the leaf surface (Shepherd and Wynne Griffiths, 2006;

Kosma et al., 2009; Le Provost et al., 2013). In addition,

oxylipins (here constituting an enriched GO term) such as

jasmonate mediate stress responses and result from the

oxidation of FAs (Andreou et al., 2009). Ethylene plays a

role in leaf senescence, a process that involves the degra-

dation of organelle membranes (Lim et al., 2007). Con-

cretely, it was shown that ethylene causes a decrease in

the levels of acyl-lipids such as MGDGs, DGDGs, PGs, PCs,

PEs and PIs in Arabidopsis leaves (Jia and Li, 2015).

With respect to the motif enrichment analysis, targets of

the AP2/EREB transcription factor family were consistent

with knowledge about lipid metabolism. WRI1a and WRI1b

are AP2/EREB transcription factors and two of the best

characterized regulators of oil biosynthesis in maize

(Pouvreau et al., 2011). The implication of their involve-

ment in the biosynthesis of FAs, the building blocks of all

acyl-lipid species, was consistent with having AP2/EREB

targets in multiple gene sets in this study. Also, Li and col-

leagues had previously identified, among 200 genes

co-expressed with WRI1a in filling-stage kernels, 11 tran-

scription factors structurally similar to either VP1/ABI3 or

AP2/EREB transcription factor families (Li et al., 2013). The

mTERF transcription factors are known to control gene

expression in mitochondria and plastids (Kleine, 2012).

Interestingly, the motif of the mTERF protein we identified

was very similar to AP2/EREB motifs (Machanick and Bai-

ley, 2011). Nevertheless, the association of a mTERF tran-

scription factor a MGDG, a plastidial galactolipid (and

considering FAs are synthesized in the plastids; Post-Beit-

tenmiller et al., 1992), might help explain this finding.

Finally, LOB/AS2 transcription factors, developmental regu-

lators like AP2/EREB, are involved in auxin-regulated lateral

root development (Matsumura et al., 2009), again evoking

co-regulation of lipid metabolism and auxin signaling.

Auxin response factors (ARFs) have already been shown to

be part of this interplay (Li et al., 2015).

Our integrative approach enabled narrowing down the

list of candidates drawn from the GFLASSO framework by

co-localization with the QTLs of the corresponding acyl-

lipid classes. For TAGs, in particular, we identified a well-

characterized acyl-CoA:diacylglycerol acyltransferase,

DGAT1-2 (Zheng et al., 2008) among 47 other candidates

from the co-localization of lipid–transcript associations

with lipid QTLs.

Finally, we inspected the network of co-localized genes

to identify highly connected genes, i.e. genes contained in

QTLs and associated with multiple lipid classes and thus

more likely to be associated with lipid metabolism. The

recruitment of aquaporins to the tonoplast is mediated by

vacuolar trafficking, which was shown to be defective after

inhibiting the biosynthesis of sterols and sphingolipids (Li

et al., 2015). On account of the importance of lipids for vac-

uolar sorting, synthesis of vacuolar proteins should then

be coordinated with lipid metabolism. The identification of

a glyceraldehyde-3-phosphate dehydrogenase, a putative

erythronate-4-phosphate dehydrogenase and a carbohy-

drate transporter is supportive of the role of glycolysis in

oil biosynthesis. The discovery of histone H3C4 and a 50–30

exonuclease is also supportive of the transcriptional and

epigenetic regulatory functions uncovered by the GO

enrichment analysis. In Arabidopsis, PVA12 coordinates

the distribution of the sterol-binding protein ORP3a at the

endoplasmic reticulum, facilitating sterol trafficking (Sara-

vanan et al., 2009). In Arabidopsis peroxisomes, PEX14

was shown to facilitate the unloading of thiolase from

PTS2 cargos (Germain et al., 2001; Lanyon-Hogg et al.,

2014). Arabidopsis ubiquitin ATGP4 was reported in a com-

prehensive proteomic study of the plasma membrane
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(Marmagne et al., 2007). Arabidopsis MED21 is a subunit

of the Mediator complex that regulates RNA polymerase II

and is important for resistance to fungi (Dhawan et al.,

2009). Finally, expression of the VP1/ABI3 member ZmAFL6

was shown to peak in young kernels, and it was consid-

ered an ortholog of AtLEC2, a well-known master regulator

in oil biosynthesis (Baud et al., 2007; Grimault et al., 2015).

The regulators of oil biosynthesis ZmWri1a and ZmWri1b

were both missing in our expression data set, probably

because their expression is confined to the embryo (Pou-

vreau et al., 2011).

We counterbalanced the large size of the gene sets from

GFLASSO (each accounting for about 5% of the whole

transcriptome) by raising the LOD threshold in the QTL

mapping to 4.5. For LOD thresholds greater than 4.5 (e.g. 5),

we could not identify QTLs for TAGs. Although a false dis-

covery rate (FDR) < 0.05 was attained with LOD = 2.5, here

we merge the QTLs of individual acyl-lipid species, allowing

us to use a higher threshold. We note that from LOD = 2.5

to LOD = 4.5 the number of co-localized genes reduced

from 254 to 81 (Figure S12). With respect to GFLASSO-

based gene selection, the choice of the 2.5th and 97.5th per-

centiles is arbitrary and aimed at ultimately extracting a

tractable number of candidates. Alternatively, when we

selected candidates from GFLASSO with coefficient esti-

mates either below or above the 5th or 95th percentiles,

thus doubling the number of genes per gene set (from 902

to 1804), we noted that results were consistent with our pre-

vious enrichment and network analyses. The GO enrich-

ment, in addition to the terms discussed above, included

starch biosynthesis in multiple gene sets (Table S6). This is

yet another cellular process that was found to be co-regu-

lated with lipid metabolism in a co-expression study of oil

palm (Guerin et al., 2016). The motif enrichment consis-

tently showed a general enrichment for AP2/EREB (DGDGs,

DAGs, PIs, PCs) and LOB/AS2 (PEs, TAGs, PGs, MGDGs)

transcription factors, and DBP (DNA-binding protein

phosphatase) in the SQDG gene set. Compared with the

previous result, the use of larger gene sets yielded smaller

E-value estimates (Table S7). The co-localization network is

approximately twice as large, displaying genes with a

degree as high as four (Figure S13).

Our rich transcriptomics and lipidomics data sets pro-

vided a resource for conducting robust computational

analysis to predict the function of maize genes involved in

lipid biosynthesis. By conducting the two-step analysis that

combined modern regression techniques with the findings

from QTL analyses, we generated high-confidence gene

candidates that could drive future experimental efforts

aimed at characterizing this molecular process with impor-

tant economic consequences. If lipid metabolism is indeed

a highly conserved process, we hope our modeling results

drawn from leaf material will partly qualify for understand-

ing lipid metabolism in the kernel, essential for any

undertaking aimed at improving the quality and quantity of

maize oil.

EXPERIMENTAL PROCEDURES

Plant material

The time-series experiment involved B73 and By804 plants grown
in a greenhouse in Huazhong Agricultural University, China. The
plants were grown under a 12-h light/12-h dark (12L12D) photope-
riod with a light intensity of about 7000 � 200 lx and sampled 45
days after sowing. The ‘summer’ trial was conducted in July 2014,
in which the eighth leaf from three biological replicates were sam-
pled at 5 min, 10 min, 20 min, 40 min, 60 min, 6 h, 11 h 20 min,
11 h 40 min and 12 h after turning on the light and 10 min,
30 min and 6 h after onset of darkness (12 time points). The ‘win-
ter’ trial was performed in January 2015, in which the eighth leaf
from three biological replicates were sampled at 30 min before
turning on the light, 1 min, 5 min, 10 min, 20 min, 40 min,
60 min, 3 h 30 min, 6 h, 8 h 30 min, 11 h 20 min, 11 h 40 min and
12 h after turning on the light, and 10 min, 30 min and 6 h after
onset of darkness (16 time points, 12 of which are common to the
‘summer’ trial). With respect to time points coinciding with
the moment the light was turned off (i.e. 12 h after turning on the
light), a 10-sec tolerance was given for the light intensity to go
down to 0 lx before sampling.

The QTL mapping experiment comprised 196 RILs from a
B73 9 By804 bi-parental population (Chander et al., 2008). The
seedling samples were harvested from the fifth leaf of seedlings,
germinated in Huazhong Agricultural University experimental field
(Wuhan, 109°510 E, 18°250 N) in 2013, and the leaf samples, at
15 days after pollination, from ear leaves in plants grown in the
same field experimental station.

Genotyping and high-density bin map

All RILs were genotyped with an Illumina MaizeSNP50 BeadChip
(https://www.illumina.com/). The bin map was constructed accord-
ing to in-house Perl scripts (https://github.com/panqingchun/linka
ge_map). More information [e.g. single nucleotide polymorphism
(SNP) missing rate, SNP heterozygosity, methods of bin map con-
struction, marker number, bin length] can be found in our previ-
ous study (Wen et al., 2015).

Lipid profiling

Samples from both the time series and QTL mapping experiments
were lyophilized and stored for subsequent analysis. Samples
were processed using ultra-performance liquid chromatography
coupled with Fourier transform mass spectrometry (UPLC-FT-MS)
on a C8 reverse phase column coupled with an Exactive mass
spectrometer (Thermo-Fisher, http://www.thermofisher.com) in
positive and negative ionization modes. Processing of chro-
matograms, peak detection and integration were performed using
REFINER MSH 10 (GeneData, http://www.genedata.com). Process-
ing of mass spectrometry data included the removal of the frag-
mentation information, isotopic peaks and chemical noise.
Chromatographic peaks were annotated using an in-house lipid
database.

Transcriptomic profiling

Transcript levels in the samples from the time-series experiment
were determined by RNA sequencing (RNA-Seq). RNA extraction,
library construction with an insert size of 300–500 bp, 150-bp
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paired-end Illumina sequencing, read mapping and SNP calling
followed published protocols. Briefly, total RNA was extracted
using a Quick RNA Isolation Kit (Huayueyang, http://www.huayue
yang.com/) according to its protocol. Bio-Rad Experion (http://
www.bio-rad.com/) was used to evaluate the quality of total RNA.
The RNA samples that passed quality control were used to con-
struct Illumina stranded mRNA libraries with a Truseq Stranded
mRNA sample preparation kit (Low Sample protocol; Illumina)
and then subjected to pair-end sequencing on Illumina Hiseq 3000
platform. Trimmomatic (v.3.0) (Bolger et al., 2014) was used to
remove low-quality bases and reads. The quality of the raw reads
and trimmed reads was checked using the FastQC (v.0.11.3) pro-
gram (Andrews, 2010). Then we mapped those trimmed reads to
the maize reference genome AGPv3 using Tophat2 (v.2.0.13) (Kim
et al., 2013). Cufflinks (v.2.0.2) was used to assemble transcripts
and estimate their abundances (Trapnell et al., 2013). The expres-
sion data were acquired from two technical replicates for the win-
ter trial and a single sample for the summer trial.

Statistical treatment

The lipid data from both the time series and QTL experiments
were normalized for (i) the initial amount of sample injected (mg)
and (ii) differences in the ion intensities among UPLC-FT-MS
batches (i.e. the batch effect). Next, features with missing values
exceeding 20% of the total number of samples were discarded.
The remaining missing values were imputed using a Random For-
est regression model, with 500 trees per forest, using the ‘mis-
sForest’ R package (Stekhoven and B€uhlmann, 2012). The
standardized median genotypic values were computed after log10-
transforming the data. The standardization (i.e. unit-variance scal-
ing) was conducted separately in the two time-series experiments
(i.e. ‘winter’ and ‘summer’ trials). Data from both trials were con-
catenated into a single data set.

The expression data from the time-series experiment were nor-
malized for sequencing depth and gene size (fragments per kilo-
base of transcript per million mapped reads, FPKM). Next, reads
with missing values exceeding 20% of the total number of sam-
ples were discarded. The remaining missing values were imputed
using the first three principal components from a Bayesian PCA,
using the ‘pcaMethods’ R package (Stacklies et al., 2007). The stan-
dardized median genotypic values were computed after log2-trans-
forming the data. The standardization was conducted separately
in the two time-series experiments. Data from both trials were
concatenated into a single data set.

Multitask-regression of lipid levels

The LSVs were obtained from the first principal component (latent
variable) in the PCA of the corresponding lipid species.

All transcript profiles, concatenated with respect to genotype
and trial, were used as predictors in the GFLASSO modeling
framework (Kim et al., 2009), aiming to jointly predict the LSVs.
The LSV correlation-based network that determines solution parsi-
mony can be either weighted (i.e. Pearson correlation coefficient)
or unweighted (i.e. presence or absence of association by impos-
ing a correlation threshold). We opted for a unweighted network
structure, since the weighted counterpart has shown little
improvement in accuracy with great expense of computational
power (Kim et al., 2009). A Pearson correlation threshold of r = .80
provided a good compromise between running time and network
density. The regularization and fusion parameters (k and c, respec-
tively) were determined from the smallest root mean squared
error (RMSE) estimate in a three-fold cross-validation repeated

five times. The tested parameters encompassed all combinations
between k and c with values ranging from 0 to 1 (inclusive) in step
increments of 0.1. GFLASSO was refitted with the optimal parame-
ters and the coefficient (b) matrix was thresholded so that values
below the 2.5th percentile or above the 97.5th percentile for each
LSV were set to 1 and otherwise to 0.

Gene Ontology enrichment analysis

Gene Ontology enrichment was conducted using the R package
‘topGO’ (Alexa and Rahnenfuhrer, 2016) with the Fisher exact test.
The GO term library used for the enrichment was downloaded
from the Ensembl Gramene Biomart (http://ensembl.gramene.org/
biomart/martview).

Promoter motif enrichment analysis

Promoter sequences of 5 kb in length were obtained from the
GRASSIUS Promoter Sequence Database (http://grassius.org/gra
sspromdb.html) (Yilmaz et al., 2009). Untargeted motif discovery
(between 6 and 30 wide) was performed on the promoter
sequences using MEME-ChIP (http://meme-suite.org/tools/meme-
chip) (Machanick and Bailey, 2011), employing the normal enrich-
ment mode with MEME (Bailey and Elkan, 1994). The obtained
E-values are estimates of the expected number of motifs that,
given the same width and site count, one would find in a similarly
sized set of randomly shuffled sequences. Motif–motif similarity
between the most significantly enriched motif and those 872 in
the Arabidopsis DNA affinity purification (DAP) atlas generated
from O’Malley et al. (2016) was evaluated with the Tomtom algo-
rithm (Gupta et al., 2007). Here, similarly, the reported E-values
are P-values adjusted for multiple testing, due to querying a single
motif against an entire library. Essentially, E is the expected num-
ber of times that the queried motif would be expected to match a
known motif as well as or better than the observed match in a ran-
domized target database of the same size.

Network analysis

Network analysis was conducted using the R package ‘statnet’
(Handcock et al., 2003).

Association mapping

The mapping of lipid QTLs using seedling and leaf samples from
the QTL experiment was performed using QTLCartographer
(Wang et al., 2012). A LOD threshold of 4.5 was used for delineat-
ing the QTLs. Lipid QTLs were merged based on lipid classes.
More detailed information can be found in our previous study
(Wen et al., 2015).
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